Math 144 Discussion 9-29-09

Definition 1 A partial ordering on a set S is a binary relation \leq on S such that for all $x, y, z \in S$:

- 1. $x \preceq x$
- 2. if $x \leq y$ and $y \leq x$, then x = y
- 3. if $x \leq y$ and $y \leq z$, then $x \leq z$

Definition 2 A partially ordered set (or poset) is a set S together with some partial ordering \leq (this will commonly be written as (S, \leq)

For the following 4 definitions: let S be a subset of a partially ordered set (or poset) L.

Definition 3 Upper Bound - an element $u \in L$ is an upper bound of S if $\forall s \in S, s \leq u$

Definition 4 Least Upper Bound - $u \in L$ is the least upper bound (or supremum) of S if it is an upper bound of S and $u \leq v$ for all other upper bounds $v \in L$ of S

Definition 5 Lower Bound - an element $u \in L$ is an lower bound of S if $\forall s \in S, u \leq s$

Definition 6 Greatest Lower Bound - $u \in L$ is the greatest lower bound (or infimum) of S if it is a lower bound of S and $v \leq u$ for all other lower bounds $v \in L$ of S

Definition 7 A poset S is said to have the Least Upper Bound Property if for E a nonempty subset of S which is bounded above, $\sup E \in S$.

Remark 8 A poset which has the Least Upper Bound Property also has the Greatest Lower Bound Property.

Exercise Let A be the set of all positive rational numbers p such that $p^2 < 2$ and let B be the set of all positive rational numbers p such that $p^2 > 2$. Show that A has no least upper bound in \mathbb{Q} (has no largest number) and that B has no greatest lower bound in \mathbb{Q} (has no smallest number).

Solution What we are going to do here is show that for every $p \in A$ we can find an element $q \in A$ such that p < q, and for every $p \in B \exists q \in B$ such that q < p.

Associate with each rational p > 0 the number

$$q = p - \frac{p^2 - 2}{p + 2} = \frac{2p + 2}{p + 2}.$$
 (1)

Then

$$q^{2} - 2 = \frac{2(p^{2} - 2)}{(p+2)^{2}}.$$
(2)

So if $p \in A$ then $p^2 - 2 < 0$, thus (1) shows that q > p, and (2) shows that $q^2 < 2$. Thus $q \in A$. Since we can carry on this process indefinitely, A has no largest element.

Now if $p \in B$ then $p^2 - 2 > 0$, thus (1) shows that 0 < q < p, and (2) shows that $q^2 > 2$. Thus $q \in B$. Again, since we can carry on this process indefinitely, B has no smallest element.

Remark The purpose of this exercise was to show that \mathbb{Q} has certain gaps, even though it is dense-in-itself (which means that in between any two elements of the set there is another element of the set). The real number system, \mathbb{R} , fills these gaps, which is why it is fundamental to analysis.

So we just showed that \mathbb{Q} has a gap because \nexists a rational number whose square is 2. What number would \mathbb{Q} need to contain in order to fill this gap? How does \mathbb{R} fix this?

So we can basically define \mathbb{R} as the combination of \mathbb{Q} and the numbers that fill its gaps. But what are the numbers that fill the gaps in \mathbb{Q} called?

Here is a precise definition of dense-in-itself:

Definition 9 Let L be a poset. L is said to be dense-in-itself if for any two distinct elements $p, q \in L$ with $p < q \exists r \in L$ such that p < r < q.

Example Lets illustrate the above definition with \mathbb{Q} . Let $p, q \in \mathbb{Q}$ with p < q. Define $r = \frac{p+q}{2}$. Then $r \in \mathbb{Q}$ since the operations of addition and multiplication are closed in \mathbb{Q} . Now we have p < r and r < q, so p < r < q.