Definition $1 A$ partial ordering on a set S is a binary relation \preceq on S such that for all $x, y, z \in S$:

1. $x \preceq x$
2. if $x \preceq y$ and $y \preceq x$, then $x=y$
3. if $x \preceq y$ and $y \preceq z$, then $x \preceq z$

Definition $2 A$ partially ordered set (or poset) is a set S together with some partial ordering \preceq (this will commonly be written as (S, \preceq)

For the following 4 definitions: let S be a subset of a partially ordered set (or poset) L.

Definition 3 Upper Bound - an element $u \in L$ is an upper bound of S if $\forall s \in S, s \leq u$

Definition 4 Least Upper Bound $-u \in L$ is the least upper bound (or supremum) of S if it is an upper bound of S and $u \leq v$ for all other upper bounds $v \in L$ of S

Definition 5 Lower Bound - an element $u \in L$ is an lower bound of S if $\forall s \in S, u \leq s$

Definition 6 Greatest Lower Bound $-u \in L$ is the greatest lower bound (or infimum) of S if it is a lower bound of S and $v \leq u$ for all other lower bounds $v \in L$ of S

Definition 7 A poset S is said to have the Least Upper Bound Property if for E a nonempty subset of S which is bounded above, $\sup E \in S$.

Remark 8 A poset which has the Least Upper Bound Property also has the Greatest Lower Bound Property.

Exercise Let A be the set of all positive rational numbers p such that $p^{2}<2$ and let B be the set of all positive rational numbers p such that $p^{2}>2$. Show that A has no least upper bound in \mathbb{Q} (has no largest number) and that B has no greatest lower bound in \mathbb{Q} (has no smallest number).

Solution What we are going to do here is show that for every $p \in A$ we can find an element $q \in A$ such that $p<q$, and for every $p \in B \exists q \in B$ such that $q<p$.

Associate with each rational $p>0$ the number

$$
\begin{equation*}
q=p-\frac{p^{2}-2}{p+2}=\frac{2 p+2}{p+2} \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
q^{2}-2=\frac{2\left(p^{2}-2\right)}{(p+2)^{2}} \tag{2}
\end{equation*}
$$

So if $p \in A$ then $p^{2}-2<0$, thus (1) shows that $q>p$, and (2) shows that $q^{2}<2$. Thus $q \in A$. Since we can carry on this process indefinitely, A has no largest element.

Now if $p \in B$ then $p^{2}-2>0$, thus (1) shows that $0<q<p$, and (2) shows that $q^{2}>2$. Thus $q \in B$. Again, since we can carry on this process indefinitely, B has no smallest element.

Remark The purpose of this exercise was to show that \mathbb{Q} has certain gaps, even though it is dense-in-itself (which means that in between any two elements of the set there is another element of the set). The real number system, \mathbb{R}, fills these gaps, which is why it is fundamental to analysis.

So we just showed that \mathbb{Q} has a gap because \nexists a rational number whose square is 2 . What number would \mathbb{Q} need to contain in order to fill this gap? How does \mathbb{R} fix this?

So we can basically define \mathbb{R} as the combination of \mathbb{Q} and the numbers that fill its gaps. But what are the numbers that fill the gaps in \mathbb{Q} called?

Here is a precise definition of dense-in-itself:

Definition 9 Let L be a poset. L is said to be dense-in-itself if for any two distinct elements $p, q \in L$ with $p<q \exists r \in L$ such that $p<r<q$.

Example Lets illustrate the above definition with \mathbb{Q}. Let $p, q \in \mathbb{Q}$ with $p<q$. Define $r=\frac{p+q}{2}$. Then $r \in \mathbb{Q}$ since the operations of addition and multiplication are closed in \mathbb{Q}. Now we have $p<r$ and $r<q$, so $p<r<q$.

